How to... Solve Systems of Linear Equations

Given: $\quad A$ set of m variables $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and n linear equations (i.e. equations containing only constant terms or linear terms a x_{i} in the variables x_{i}).

Wanted: \quad A set \mathcal{L} of solution vectors $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{\top}$.

Example

We consider the following linear equations:

$$
\begin{aligned}
x_{1}+2 x_{2}-3 & =-2 x_{4}-x_{3} \\
-2 x_{3}+8 & =3 x_{1}+6 x_{2}+7 x_{4} \\
2 x_{1}+x_{3} & =5-4 x_{2}-5 x_{4} \\
-4 x_{2}+4 & =2 x_{1}+6 x_{4}
\end{aligned}
$$

1 Create matrix representation
Move all terms with variables to one side of the equations and all constant terms to the other such that every equation has the form

$$
a_{i, 1} x_{1}+a_{i, 2} x_{2}+\ldots+a_{i, m} x_{i, m}=b_{i} .
$$

Create the coefficient matrix \boldsymbol{A} with entries $\mathrm{a}_{\mathrm{i}, \mathrm{j}}$ and a right hand side vector $\mathbf{b}=$ $\left(b_{1}, \ldots, b_{n}\right)^{\top}$. The system of linear equations can now be represented as

$$
\mathbf{A x}=\mathbf{b} .
$$

Example

We move all variables to the left side and all constants to the right side and obtain

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3}+2 x_{4} & =3 \\
-3 x_{1}-6 x_{2}-2 x_{3}-7 x_{4} & =-8 \\
2 x_{1}+4 x_{2}+x_{3}+5 x_{4} & =5 \\
-2 x_{1}-4 x_{2}-6 x_{4} & =-4
\end{aligned}
$$

Thus we get the matrix \boldsymbol{A} and vector \mathbf{b}.

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
1 & 2 & 1 & 2 \\
-3 & -6 & -2 & -7 \\
2 & 4 & 1 & 5 \\
-2 & -4 & 0 & -6
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
3 \\
-8 \\
5 \\
-4
\end{array}\right)
$$

2 Execute the Gauss Algorithm

a Create augmented matrix
Create the matrix $[\boldsymbol{A} \mid \mathbf{b}]$ by adding the vector \mathbf{b} to the matrix \boldsymbol{A}.

b Execute Gauss-algorithm steps

Iteratively use one of the following steps
(i) Swap positions of two rows
(ii) Multiply one row by a non-zero factor
(iii) Add (a multiple of) one row to another row
on the augmented matrix $[\boldsymbol{A} \mid \mathbf{b}]$.

c Stopping criterion

Stop, if the augmented matrix has the following reduced row echelon form:

$$
\text { n rows }\left\{\begin{array}{ccccccc|c}
1 & * & 0 & * & \cdots & 0 & * & \mathrm{~b}_{1} \\
0 & 0 & 1 & * & \cdots & 0 & * & \mathrm{~b}_{2} \\
0 & 0 & 0 & 0 & \cdots & 0 & * & \mathrm{~b}_{3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & * & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & * & \mathrm{~b}_{\mathrm{r}-1} \\
0 & 0 & 0 & 0 & \cdots & 1 & * & \mathrm{~b}_{\mathrm{r}} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \mathrm{~b}_{\mathrm{r}+1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & 0 & \vdots \\
0 & \underbrace{}_{\mathrm{m} \text { columns }} & 0 & 0 & \cdots & 0 & 0 & \mathrm{~b}_{\mathrm{n}}
\end{array}\right)
$$

The $*$ stands for arbitrary entries. The marked 1 are the pivot elements, the variables correpsonding to these columns are called pivot variables or basis variables. All other variables (i.e. the variables corresponding to the $*$-columns) are called non-basis variables.

We create the augmented matrix

$$
[\boldsymbol{A} \mid \mathbf{b}]=\left(\begin{array}{cccc|c}
\text { (1) } & 2 & 1 & 2 & 3 \\
-3 & -6 & -2 & -7 & -8 \\
2 & 4 & 1 & 5 & 5 \\
-2 & -4 & 0 & -6 & -4
\end{array}\right) .
$$

The top-left element of the matrix is non-zero, so we can use it as the first pivot element. (Otherwise, we could have swapped rows or, in case of a zero-column, moved on to the next column.) We do not need to multiply the first row by some factor since the pivot element is already a 1 . In order to obtain zeros below this element, we combine rows in the following way: II $+3 \cdot I$, III $-2 \cdot I$, and IV + I.
no potential pivot element here $\left(\begin{array}{ccccc|}1 & 2 & 1 & 2 & 3 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 \\ 0 & 0 & -1 & 1 & -1 \\ 0 & -2 & 2\end{array}\right)$.
The second column contains only zeros starting from the second column, so there is no candidate for a pivot element in the second column. The next pivot element is the 1 in the third column. (Again, we do not need a multiplication of this row.) We combine the rows in the following way: III + II and IV -2 II and obtain

$$
\text { need zeros here }\left(\begin{array}{cccc|c}
1 & 2 & 1 & 2 & 3 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Since the pivot element has to be the only non-zero element in its row, we substract the second from the first row (I - II) and get the final tableau

$$
\left(\begin{array}{cccc|c}
1 & 2 & 0 & 3 & 2 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

There are no more candidates for pivot elements (all further rows are zero rows). The augmented matrix is in the reduced row echelon form. We have 2 pivot elements, and thus 2 basis variables (x_{1} and x_{3} as the pivots are in the first and third column). The variables x_{2} and x_{4} are non-basis variables. The rank of the matrix is 2 (since we have 2 pivot elements).

3 Create the solution set

a Empty solution set

If there is a non-zero b_{i} value on the right hand side of a otherwise all-zero row, then the solution set is empty, i.e. $\mathcal{L}=\emptyset$.

b Non-empty solution set

If the number of pivot elements (number of basis variables) is r and the number of non-basis variables is $k=m-r$, then create the solution set

$$
\mathcal{L}=\left\{\boldsymbol{x}=\boldsymbol{x}^{(0)}+\lambda_{1} \boldsymbol{v}^{(1)}+\ldots+\lambda^{(k)} \boldsymbol{v}^{(k)} \mid \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}\right\}
$$

where
(i) $\boldsymbol{x}^{(0)}$ is the vector with (a) the right-hand side values at the position of basis variables and (b) zeros otherwise.
(ii) $\boldsymbol{v}^{(i)}$ is the vector with (a) the negative values of the column corresponding to the i-th non-basis variable at the positions of the basis variables, (b) a 1 at the position of the i-th non-basis variables, and (c) zeros otherwise.

The result of the Gauss-algorithm was

$$
\left(\begin{array}{cccc|c}
1 & 2 & 0 & 3 & 2 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \leftarrow \text { row of first basis variable }\left(x_{1}\right)
$$

So we get the basis solution

$$
x^{(0)}=\left(\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right)
$$

and the non-basis solutions (these are the basis vectors of the nullspace of the matrix A)

$$
\boldsymbol{v}^{(1)}=\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right) \quad \boldsymbol{v}^{(2)}=\left(\begin{array}{c}
-3 \\
0 \\
1 \\
1
\end{array}\right) \longleftarrow \text { values from the non-basis column }
$$

Hence, the solution set is the following set:

$$
\mathcal{L}=\left\{\left.x=\left(\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right)+\lambda_{1} \cdot\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+\lambda_{2} \cdot\left(\begin{array}{c}
-3 \\
0 \\
1 \\
1
\end{array}\right) \right\rvert\, \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

